The Functional Medicine Approach to COVID-19: Additional Research on Nutraceuticals and Botanicals
Content Reviewed on 09/05/23
In this paper, we add to the list of nutraceuticals and botanicals introduced earlier in our first article, The Functional Medicine Approach to COVID-19: Virus-Specific Nutraceutical and Botanical Agents. Periodically, we will update the original list to highlight other agents that may be considered as additional treatments against SARS-CoV. Along with the original list, these agents can be considered as immunoadjuvants, protease inhibitors, ACE2 modulators, zinc ionophores, and anti-inflammatory agents. Additionally, some nutraceuticals and botanicals could potentially inhibit SARS-CoV-2 replication. Our recommendation is to use higher dosing and/or multiple agents when patient contextual factors (e.g., patient desire, pre-existing inflammation, multiple co-morbidities, higher risk, etc.) and/or therapeutic decision-making warrant such use.
As part of the Functional Medicine approach to COVID-19, IFM has outlined the biological plausibility, mechanism of action, strength of evidence, and risk of harm for various nutraceutical and botanical agents that may have activity against SARS-CoV-2. This article is part two of a series. Click here to view part one.
Beta glucans are known to modulate immune activity, mostly by priming or training innate immune responses through interactions with pattern recognition receptors (PRRs) and by increasing anti-inflammatory cytokines such as IL-10. Beta glucans induce activity against viral attack.Numerous human trials have shown that beta glucans decrease cold and flu symptoms and upper respiratory tract infections compared to placebo.
Intervention
Beta glucans
Suggested dose
250-500 mg daily
Mechanism(s) of action against non-COVID-19 viruses
Priming innate immune function
Promoting viral eradication or inactivation
Outcomes data supporting their mitigating effects on illness from other viral strains
Reduction of symptoms
Strength of evidence
Strong
Risk of harm
Minimal
MUSHROOMS
Various mushrooms species have been shown to possess broad immunomodulatory effects. They possess multiple mechanisms of action, including increasing the number of circulating B cells, increasing gut immunity, stimulating host immunity, activating innate immune cells, and increasing cytotoxic activity of NK cells.
Intervention
Various medicinal mushrooms, including Shiitake (Lentinula edodes), Lion’s Mane (Hericium erinaceus), Maitake (Grifola frondosa), Reishi (Ganoderma lucidum)
Suggested dose
Varied.
Given the variety of active ingredients in mushrooms and the variability of the extraction processes, it is suggested that dosing instructions should be individualized based on research of specific mushroom genus and species.
Mechanism(s) of action against non-COVID-19 viruses
Promoting viral eradication or inactivation
Modulation of innate immune response
Outcomes data supporting their mitigating effects on illness from other viral strains
Inconclusive, due to variety of species and combinations. Consult knowledgeable healthcare provider.
Strength of evidence
Limited
Risk of harm
Inconclusive, due to variety of species and combinations.
LICORICE (GLYCYRRHIZA SPECIES)
Licorice (Glycyrrhiza species) has multiple mechanisms of action, including inhibition of viral replication blocking the ACE2 receptor, promoting the activity of Th1 cells, and inhibition of pro-inflammatory cytokines, prostaglandins, and nitric oxide production. The inhibition of hydrocortisone metabolism by 11 beta-HSD has also been suggested as a potential mechanism of licorice’s anti-inflammatory action. Licorice has been use in traditional Chinese medicine (TCM) formulations against SARS-CoV-1 and H1N1 and reviewed for its effects on SARS-CoV-2. Two positive human trials have been performed against SARS-CoV-1 using a TCM formulation containing licorice.
Intervention
Licorice (Glycyrrhiza glabra)
Suggested dose
Licorice root standardized to glycyrrhizin. 200-400 mg daily in divided doses. Short term use: <4 weeks.
Mechanism(s) of action against non-COVID-19 viruses
Promoting viral eradication or inactivation
Favorably modulating inflammation
Outcomes data supporting their mitigating effects on illness from other viral strains
Reduction of symptoms
Strength of evidence
Moderate
Risk of harm
Minimal, if short-term use (< 4 weeks)
ANDROGRAPHIS PANICULATA
The leaves of Andrographis paniculata have been used in traditional Eastern medicine systems for centuries for the treatment and prevention of upper respiratory tract infections (URTI), coughs, and sinusitis. Systematic reviews show a consistent and clinically relevant effect when used as a single herb or in combination with other herbal preparations. Andrographis has demonstrated anti-inflammatory, antiviral, and immune-stimulatory activities and has been shown, in vitro, to be effective against avian influenza A (H9N2 and H5N1) and human influenza A H1N1 viruses. It has been shown to inhibit platelet-activating factor–mediated inflammatory responses, to reduce the expression of cyclooxygenase-2, and to have analgesic as well as antipyretic effects. In addition, Andrographis is one of many agents that acts to decrease the activity of furin protease, a necessary step in SARS-CoV-2 spike protein activation and insertion into mucosal epithelial cells.
Intervention
Andrographis (Andrographis paniculata)
Suggested dose
Standardized extract (typically 30% andrographolides) 100-600 mg daily, most often delivered in combination with other herbal preparations.
Mechanism(s) of action against non-COVID-19 viruses
Inhibition of furin protease
Priming innate immune function
Promoting viral eradication or inactivation
Outcomes data supporting their mitigating effects on illness from other viral strains
Reduction of symptoms
Strength of evidence
Strong
Risk of harm
Minimal
ASTRAGALUS MEMBRANACEUS
Astragalus membranaceus has been used in traditional Chinese medicine (TCM) for centuries. Astragalus is well-known for its antiviral activity, for its anti-inflammatory properties, for priming the innate immune system, and for reducing NLRP3-mediated inflammation. In addition, the plant alkaloid swainsonine inhibits the glycosylation necessary for the SARS-CoV-2 spike protein to attach to human cells.
Intervention
Astragalus (Astragalus membranaceous)
Suggested dose
Dosage range varies between 1-20 grams daily, depending on the percentage of astragalosides and other immunoactive polysaccharides. In China, it is usually in dried root powder form.
Mechanism(s) of action against non-COVID-19 viruses
Priming innate immune function
Inhibiting glycosylation and viral binding
Promoting viral eradication or inactivation
Outcomes data supporting their mitigating effects on illness from other viral strains
Inconclusive
Strength of evidence
Conditional
Risk of harm
Minimal
BERBERINE
Berberine is an alkaloid that is found in the roots, rhizomes, and stem bark of various plants, including goldenseal, goldthread, and Oregon grape. Berberine has been shown to have anti-viral activity across a broad range of viral targets. Berberine also activates 5′ AMP-activated protein kinase (AMPK), which is directly anti-inflammatory. Berberine’s anti-inflammatory effects also include suppression of inhibition of IkB kinase and downregulation of NFkB, IL-1, and TNF. Berberine also acts to lower blood glucose, thus helping with furin inhibition, as well as preserving ACE2 receptors, possibly through aldose reductase inhibition.
Intervention
Berberine
Suggested dose
500 mg, 2-3 times daily
Mechanism(s) of action against non-COVID-19 viruses
Outcomes data supporting their mitigating effects on illness from other viral strains
No data available
Strength of evidence
Limited
Risk of harm
Minimal
ECHINACEA (ECHINACEA SPECIES)
Echinacea species (E. purpurea, E. angustifolia, and E. pallida) are all used for medicinal purposes. Echinacea’s immunological effects appear to be derived from a combination of constituents. E. purpurea has been shown to stimulate macrophage activation as well as NK cell activity in both human and animal models, and it may be linked directly to increased cytokine expression. Various Echinacea preparations have shown antiviral activity. Echinacea preparations alone have been shown to reduce the frequency, severity, and/or duration of upper respiratory tract symptoms in several trials, and various multi-herb/nutrient formulas containing Echinacea preparations have also been shown to be effective in reducing symptoms
Intervention
Echinacea species (E. purpurea, E. angustifolia, and E. pallida)
Suggested dose
Varied. Given the variety of active ingredients in various species and the variability of the extraction processes, it is suggested that dosing instructions be individualized based on research of specific Echinacea species.
Mechanism(s) of action against non-COVID-19 viruses
Priming innate immune function
Promoting viral eradication or inactivation
Outcomes data supporting their mitigating effects on illness from other viral strains
Prevention of infection
Reduced duration of symptoms
Luteolin is a flavonoid found in medicinal plants and many fruit and vegetables, including peppers, celery, radicchio, chicory, and lemons. Plants rich in luteolin have been used in traditional Chinese medicine for the treatment of hypertension, inflammatory disorders, and cancer. Recent screening studies have identified luteolin as a candidate molecule to block SARS-CoV-2 entry into the cell as well as to modulate excessive inflammatory responses.
Intervention
Luteolin
Suggested dose
100-200 mg, 2-3 times daily
Mechanism(s) of action against non-COVID-19 viruses
Mpro inhibition
Inhibition of wild-type SARS-CoV infection
Binding to viral S protein and furin inhibition
Promoting viral eradication or inactivation
Modulation of inflammation
Outcomes data supporting their mitigating effects on illness from other viral strains
Inconclusive
Strength of evidence
Conditional
Risk of harm
Minimal
Evaluative Criteria
In the recommendations above, the following criteria are used to identify strength of evidence and risk of harm.
Strength of Evidence
Risk of Harm
Strength of EvidenceConditional
Human trials with conflicting outcomes, or lack of published human trials.
Must be supported by extensive historical experience of effectiveness, consensus of expert opinion, mechanistic plausibility, and compelling Functional Medicine model factors. In the absence of any one of these features, must be supported by compelling patient or clinical circumstances or contextual
Risk of HarmMinimal
Risk of self-limited symptoms
No risk of loss of function or corrective intervention anticipated; expected to resolve with discontinuation and observation
Strength of EvidenceLimited
One human study demonstrating correlation between intervention and outcome, or real world data/evidence demonstrating patient oriented outcome;
Must be accompanied by compelling Functional Medicine model factors and/or patient contextual factors and mechanistic plausibility
Risk of HarmMild
Risk of self-limited symptoms. No risk of loss of function. Expected to resolve with discontinuation and minor evaluative and/or therapeutic intervention
Strength of EvidenceModerate
Moderate
Two independent human studies (one of which is LOE = 1 or 2) demonstrating correlation between intervention and patient oriented outcome; mechanistic plausibility required
Risk of HarmSignificant
Risk of temporary loss of function or quality of life
Significant evaluative and/or therapeutic intervention necessary to resolve
Strength of EvidenceStrong
Strong
Two independent human studies (both LOE = 1 or 2) demonstrating correlation between intervention and patient oriented outcome; mechanistic plausibility or one additional independent human study required
Risk of HarmSevere
Risk of permanent symptoms, loss of function, quality of life, or death
Long term evaluative and/or therapeutic intervention necessary to mitigate
*This resource is only intended to identify nutraceutical and botanical agents that may boost your immune system. It is not meant to recommend any treatments, nor have any of these been proven effective against COVID-19. None of these practices are intended to be used in lieu of other recommended treatments. Always consult your physician or healthcare provider prior to initiation. For up-to-date information on COVID-19, please consult the Centers for Disease Control and Prevention at www.cdc.gov.
SPECIAL THANKS We would like to thank the IFM COVID-19 Task Force, members of the IFM staff, and consultants working with IFM for their contributions to this article.
Webinar
Click here to see all references
References
BETA GLUCANS
Castro E, Calder PC, Roche HM. ß-1,3/1,6-glucans and immunity: state of the art and future directions. Mol Nutr Food Res. Published online March 29, 2020. doi:1002/mnfr.201901071
Vetvicka V, Vannucci L, Sima P, Richter J. Beta glucan: supplement or drug? From laboratory to clinical trials.Molecules. 2019;24(7):E1251. doi:3390/molecules24071251
Mosikanon K, Arthan D, Kettawan A, Tungtrongchitr R, Prangthip P. Yeast ß-glucan modulates inflammation and waist circumference in overweight and obese subjects.J Diet Suppl.2017;14(2):173-185. doi:1080/19390211.2016.1207005
Bobovcák M, Kuniaková R, Gabriž J, Majtán J. Effect of Pleuran (ß-glucan from Pleurotus ostreatus) supplementation on cellular immune response after intensive exercise in elite athletes.Appl Physiol Nutr Metab.2010;35(6):755-762. doi:1139/H10-070
Gaullier JM, Sleboda J, Øfjord ES, et al. Supplementation with a soluble ß-glucan exported from Shiitake medicinal mushroom, Lentinus edodes (Berk.) singer mycelium: a crossover, placebo-controlled study in healthy elderly.Int J Med Mushrooms. 2011;13(4):319-326. doi:1615/intjmedmushr.v13.i4.10
Leentjens J, Quintin J, Gerretsen J, Kox M, Pickkers P, Netea MG. The effects of orally administered beta-glucan on innate immune responses in humans, a randomized open-label intervention pilot-study.PLoS One.2014;9(9):e108794. doi:1371/journal.pone.0108794
Nieman DC, Henson DA, McMahon MA, et al. Beta-glucan, immune function, and upper respiratory tract infections in athletes.Med Sci Sports Exerc.2008;40(8):1463-1471. doi:1249/MSS.0b013e31817057c2
Yun CH, Estrada A, Van Kessel A, Park BC, Laarveld B. Beta-glucan, extracted from oat, enhances disease resistance against bacterial and parasitic infections.FEMS Immunol Med Microbiol.2003;35(1):67-75. doi:1016/S0928-8244(02)00460-1
Volman JJ, Ramakers JD, Plat J. Dietary modulation of immune function by beta-glucans.Physiol Behav.2008;94(2):276-284. doi:1016/j.physbeh.2007.11.045
McFarlin BK, Carpenter KC, Davidson T, McFarlin MA. Baker’s yeast beta glucan supplementation increases salivary IgA and decreases cold/flu symptomatic days after intense exercise.J Diet Suppl.2013;10(3):171-183. doi:3109/19390211.2013.820248
Auinger A, Riede L, Bothe G, Busch R, Gruenwald J. Yeast (1,3)-(1,6)-beta-glucan helps to maintain the body’s defence against pathogens: a double blind, randomized, placebo-controlled, multicentric study in healthy subjects.Eur J Nutr. 2013;52(8):1913-1918. doi:1007/s00394-013-0492-z
Graubaum HJ, Busch R, Stier H, Gruenwald J. A double-blind, randomized, placebo-controlled nutritional study using an insoluble yeast beta-glucan to improve the immune defense system.Food Nutr Sci.2012;3(6):738-746. doi:4236/fns.2012.36100
Fuller R, Moore MV, Lewith G, et al. Yeast-derived ß-1,3/1,6 glucan, upper respiratory tract infection and innate immunity in older adults.Nutrition. 2017;39-40:30-35. doi:1016/j.nut.2017.03.003
Dharsono T, Rudnicka K, Wilhelm M, Schoen C. Effects of yeast (1,3)-(1,6)-beta-glucan on severity of upper respiratory tract infections: a double-blind, randomized, placebo-controlled study in healthy subjects.J Am Coll Nutr.2019;38(1):40-50. doi:1080/07315724.2018.1478339
Mah E, Kaden VN, Kelley KM, Liska DJ. Beverage containing dispersible yeast ß-glucan decreases cold/flu symptomatic days after intense exercise: a randomized controlled trial.J Diet Suppl.2020;17(2):200-210. doi:1080/19390211.2018.1495676
Fuller R, Butt H, Noakes PS, Kenyon J, Yam TS, Calder PC. Influence of yeast-derived 1,3/1,6 glucopolysaccharide on circulating cytokines and chemokines with respect to upper respiratory tract infections.Nutrition. 2012;28(6):665-669. doi:1016/j.nut.2011.11.012
Talbott SM, Talbott JA. Baker’s yeast beta-glucan supplement reduces upper respiratory symptoms and improves mood state in stressed women. J Am Coll Nutr.2012;31(4):295-300. doi:1080/07315724.2012.10720441
Talbott S, Talbott J. Beta 1,3/1,6 glucan decreases upper respiratory tract infection symptoms and improves psychological well-being in moderate to highly-stressed subjects.Agro Food Ind Hi Tech. 2010;21:21-24.
Jesenak M, Urbancikova I, Banovcin P. Respiratory tract infections and the role of biologically active polysaccharides in their management and prevention.Nutrients. 2017;9(7):E779. doi:3390/nu9070779
MUSHROOMS
Gaullier JM, Sleboda J, Øfjord ES, et al. Supplementation with a soluble -glucan exported from Shiitake medicinal mushroom, Lentinus edodes (Berk.) singer mycelium: a crossover, placebo-controlled study in healthy elderly.Int J Med Mushrooms. 2011;13(4):319-326. doi:1615/v13.i4.10
Geller A, Shrestha R, Yan J. Yeast-derived β-glucan in cancer: novel uses of a traditional therapeutic.Int J Mol Sci.2019;20(15):E3618. doi:3390/ijms20153618
Dai X, Stanilka JM, Rowe CA, et al. ConsumingLentinula edodes(Shiitake) mushrooms daily improves human immunity: a randomized dietary intervention in healthy young adults.J Am Coll Nutr. 2015;34(6):478-487. doi:1080/07315724.2014.950391
Jin X, Ruiz Beguerie J, Sze DM, Chan GC.Ganoderma lucidum(Reishi mushroom) for cancer treatment. Cochrane Database Syst Rev.2012;(6):CD007731. doi:1002/14651858.CD007731.pub2
Kim SP, Moon E, Nam SH, Friedman M.Hericium erinaceusmushroom extracts protect infected mice against Salmonella typhimurium-induced liver damage and mortality by stimulation of innate immune cells.J Agric Food Chem.2012;60(22):5590-5596. doi:1021/jf300897w
Kodama N, Komuta K, Nanba H. Effect of Maitake (Grifola frondosa) D-fraction on the activation of NK cells in cancer patients.J Med Food. 2003;6(4):371-377. doi:1089/109662003772519949
Nogusa S, Gerbino J, Ritz BW. Low-dose supplementation with active hexose correlated compound improves the immune response to acute influenza infection in C57BL/6 mice.Nutr Res.2009;29(2):139-143. doi:1016/nutres.2009.01.005
Fujii H, Nishioka H, Wakame K, Sun B. Nutritional food active hexose correlated compound (AHCC) enhances resistance against bird flu.JCAM. 2007;4(1):37-40. doi:1625/jcam.4.37
Ritz BW, Nogusa S, Ackerman EA, Gardner EM. Supplementation with active hexose correlated compound increases the innate immune response of young mice to primary influenza infection.J Nutr.2006;136(11):2868-2873. doi:1093/jn/136.11.2868
Wang S, Welte T, Fang H, et al. Oral administration of active hexose correlated compound enhances host resistance to West Nile encephalitis in mice.J Nutr.2009;139(3):598-602. doi:3945/jn.108.100297
LICORICE (GLYCYRRHIZA SPECIES)
Fiore C, Eisenhut M, Krausse R, et al. Antiviral effects of Glycyrrhiza species.Phytother 2008;22(2):141-148. doi:10.1002/ptr.2295
Sun ZG, Zhao TT, Lu N, Yang YA, Zhu HL. Research progress of glycyrrhizic acid on antiviral activity. Mini Rev Med Chem. 2019;19(10):826-832. doi:2174/1389557519666190119111125
Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet. 2003;361(9374):2045-2046. doi:1016/s0140-6736(03)13615-x
Chen H, Du Q. Potential natural compounds for preventing 2019-nCoV infection. Preprints. Published online March 10, 2020. doi: 10.20944/preprints0358.v3
Wang L, Yang R, Yuan B, Liu Y, Liu C. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm Sin B. 2015;5(4):310-315. doi:1016/j.apsb.2015.05.005
Schleimer Potential regulation of inflammation in the lung by local metabolism of hydrocortisone.Am J Respir Cell Mol Biol. 1991;4(2):166-173. doi:1165/ajrcmb/4.2.166
Luo H, Tang QL, Shang YX, et al. Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chin J Integr Med. 2020;26(4):243-250. doi:1007/s11655-020-3192-6
Lau JT, Leung PC, Wong EL, et al. The use of an herbal formula by hospital care workers during the severe acute respiratory syndrome epidemic in Hong Kong to prevent severe acute respiratory syndrome transmission, relieve influenza-related symptoms, and improve quality of life: a prospective cohort study. J Alternat Complement Med. 2005;11(1):49-55. doi:1089/acm.2005.11.49
Michaelis M, Geiler J, Naczk P, et al. Glycyrrhizin exerts antioxidative effects in H5N1 influenza A virus-infected cells and inhibits virus replication and pro-inflammatory gene expression. PLoS 2011;6(5):e19705. doi:1371/journal.pone.0019705
Tong T, Hu H, Zhou J, et al. Glycyrrhizic-acid-based carbon dots with high antiviral activity by multisite inhibition mechanisms.Small. 2020;16(13):e doi:1002/smll.201906206
Manns MP, Wedemeyer H, Singer A, et al. Glycyrrhizin in patients who failed previous interferon alpha-based therapies: biochemical and histological effects after 52 weeks. J Viral Hepat. 2012;19(8):537-546. doi:1111/j.1365-2893.01579.x
Orlent H, Hansen BE, Willems M, et al. Biochemical and histological effects of 26 weeks of glycyrrhizin treatment in chronic hepatitis C: a randomized phase II trial. J Hepatol. 2006;45(4):539-546. doi:1016/j.jhep.2006.05.015
Omar HR, Komarova I, El-Ghonemi M, et al. Licorice abuse: time to send a warning message. Ther Adv Endocrinol Metab. 1177/2042018812454322
Russo S, Mastropasqua M, Mosetti MA, Persegani C, Paggi Low doses of liquorice can induce hypertension encephalopathy. Am J Nephrol. 2000;20(2):145-148. doi:1159/000013572
Dellow EL, Unwin RJ, Honour Pontefract cakes can be bad for you: refractory hypertension and liquorice excess.Nephrol Dial Transplant. 1999;14(1):218-220. doi:1093/ndt/14.1.218
de Klerk GJ, Nieuwenhuis MG, Beutler Hypokalaemia and hypertension associated with use of liquorice flavoured chewing gum.BMJ. 1997;314(7082):731-732. doi:1136/bmj.314.7082.731
ANDROGRAPHIS PANICULATA
Kligler B, Ulbricht C, Basch E, et al. Andrographis paniculatafor the treatment of upper respiratory infection: a systematic review by the Natural Standard Research Collaboration. Explore (NY). 2006;2(1):25-29. doi:1016/j.explor2005.08.008
Hu XY, Wu RH, Logue M, et al. Andrographis paniculata(Chuan Xin Lián) for symptomatic relief of acute respiratory tract infections in adults and children: a systematic review and meta-analysis.PLoS One. 2017;12(8):e doi:1371/journal.pone.0181780
Melchior J, Spasov AA, Ostrovskij OV, Bulanov AE, Wikman Double-blind, placebo-controlled pilot and phase III study of activity of standardized Andrographis paniculata Herba Nees extract fixed combination (Kan Jang) in the treatment of uncomplicated upper-respiratory tract infection.Phytomedicine. 2000;7(5):341-350. doi:1016/S0944-7113(00)80053-7
Kulichenko LL, Kireyeva LV, Malyshkina EN, Wikman A randomized, controlled study of Kan Jang versus amantadine in the treatment of influenza in Volgograd. J Herb Pharmacother. 2003;3(1):77-93.
Mussard E, Cesaro A, Lespessailles E, Legrain B, Berteina-Raboin S, Toumi Andrographolide, a natural antioxidant: an update.Antioxidants (Basel). 2019;8(12):E571. doi:3390/antiox8120571
Suebsasana S, Pongnaratorn P, Sattayasai J, Arkaravichien T, Tiamkao S, Aromdee Analgesic, antipyretic, anti-inflammatory and toxic effects of andrographolide derivatives in experimental animals.Arch Pharm Res. 2009;32(9):1191-1200. doi:1007/s12272-009-1902-x
Shen YC, Chen CF, Chiou Andrographolide prevents oxygen radical production by human neutrophils: possible mechanism(s) involved in its anti-inflammatory effect.Br J Pharmacol. 2002;135(2):399-406. doi:1038/sj.bjp.0704493
Wiart C, Kumar K, Yusof MY, Hamimah H, Fauzi ZM, Sulaiman Antiviral properties of ent-labdene diterpenes of Andrographis paniculata nees, inhibitors of herpes simplex virus type 1.Phytother Res. 2005;19(12):1069-1070. doi:1002/ptr.1765
Ji LL, Wang Z, Dong F, Zhang WB, Wang ZT. Andrograpanin, a compound isolated from anti-inflammatory traditional Chinese medicine Andrographis paniculata, enhances chemokine SDF-1alpha-induced leukocytes chemotaxis.J Cell Biochem. 2005;95(5):970-978. doi:1002/jcb.20464
Kumar RA, Sridevi K, Kumar NV, Nanduri S, Rajagopal S. Anticancer and immunostimulatory compounds from Andrographis paniculata.J Ethnopharmacol. 2004;92(2-3):291-295. doi:1016/j.jep.2004.03.004
Rajagopal S, Kumar RA, Deevi DS, Satyanarayana C, Rajagopalan R. Andrographolide, a potential cancer therapeutic agent isolated from Andrographis paniculata.J Exp Ther Oncol. 2003;3(3):147-158. doi:1046/j.1359-4117.01090.x
Basak A, Cooper S, Roberge AG, Banik UK, Chrétien M, Seidah Inhibition of proprotein convertases-1, -7 and furin by diterpines of Andrographis paniculataand their succinoyl esters.Biochem J. 1999;338(Pt 1):107-113.
Cáceres DD, Hancke JL, Burgos RA, Sandberg F, Wikman Use of visual analogue scale measurements (VAS) to assess the effectiveness of standardized Andrographis paniculataextract SHA-10 in reducing the symptoms of common cold. A randomized double-blind placebo study.Phytomedicine. 1999;6(4):217-223. doi:1016/S0944-7113(99)80012-9
Saxena RC, Singh R, Kumar P, et al. A randomized double blind placebo controlled clinical evaluation of extract of Andrographis paniculata(KalmCold™) in patients with uncomplicated upper respiratory tract infection.Phytomedicine. 2010;17(3-4):178-185. doi:1016/j.phymed.2009.12.001
Melchior J, Spasov AA, Ostrovskij OV, Bulanov AE, Wikman Double-blind, placebo-controlled pilot and phase III study of activity of standardized Andrographis paniculata
Herba Nees extract fixed combination (Kan Jang) in the treatment of uncomplicated upper-respiratory tract infection.Phytomedicine. 2000;7(5):341-350. doi:1016/S0944-7113(00)80053-7
Poolsup N, Suthisisang C, Prathanturarug S, et al. Andrographis paniculatain the symptomatic treatment of uncomplicated upper respiratory tract infection: systematic review of randomized controlled trials.J Clin PharmTher. 2004;29(1):37-45. doi:1046/j.1365-2710.00534.x
Suwankesawong W, Saokaew S, Permsuwan U, Chaiyakunapruk Characterization of hypersensitivity reactions reported among Andrographis paniculatausers in Thailand using Health Product Vigilance Center (HPVC) database.BMC Complement Altern Med. 2014;14:515.doi:1186/1472-6882-14-515
Suebsasana S, Pongnaratorn P, Sattayasai J, Arkaravichien T, Tiamkao S, Aromdee Analgesic, antipyretic, anti-inflammatory and toxic effects of andrographolide derivatives in experimental animals.Arch Pharm Res. 2009;32(9):1191-1200. doi:1007/s12272-009-1902-x
ASTRAGALUS MEMBRANACEUS
Zheng Y, Ren W, Zhang L, Zhang Y, Liu D, Liu Y. A review of the pharmacological action of Astragalus polysaccharide.Front Pharmacol. 2020;11:349. doi:3389/fphar.2020.00349
Guo Q, Sun X, Zhang Z, et al. The effect of Astragalus polysaccharide on the Epstein-Barr virus lytic cycle.Acta Virol. 2014;58(1):76-80. doi:4149/av_2014_01_76
Shang L, Qu Z, Sun L, et al. Astragaloside IV inhibits adenovirus replication and apoptosis in A549 cells in vitro.J Pharm Pharmacol. 2011;63(5):688-694. doi:1111/j.2042-7158.01258.x
Ye G, Tang YH, Xia GX, Sun ZL, Li ZX, Huang CG. Characterization of anti-coxsackie virus B3 constituents of Radix Astragali by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry.Biomed Chromatogr. 2010;24(11):1147-1151. doi:1002/bmc.1400
Wang Y, Ren T, Zheng L, Chen H, Ko JK, Auyeung KK.Astragalus saponinsinhibits lipopolysaccharide-induced inflammation in mouse macrophages.Am J Chin Med. 2016;44(3):579-593. doi:1142/S0192415X16500324
Auyeung KK, Han QB, Ko JK.Astragalus membranaceus: a review of its protection against inflammation and gastrointestinal cancers.Am J Chin Med. 2016;44(1):1-22. doi:1142/S0192415X16500014
Dong N, Li X, Xue C, et al.Astragalus polysaccharidesalleviates LPS-induced inflammation via the NF-kB/MAPK signaling pathway.J Cell Physiol. 2020;235(7-8):5525-5540. doi:1002/jcp.29452
Chen SM, Tsai YS, Lee SW, et al.Astragalus membranaceusmodulates Th1/2 immune balance and activates PPARy in a murine asthma model.Biochem Cell Biol. 2014;92(5):397-405. doi:1139/bcb-2014-0008
Qiu YY, Zhu JX, Bian T, et al. Protective effects of astragaloside IV against ovalbumin-induced lung inflammation are regulated/mediated by T-bet/GATA-3.Pharmacology. 2014;94(1-2):51-59. doi:1159/000362843
Han R, Wu WQ, Wu XP, Liu CY. Effect of total flavonoids from the seeds ofAstragali complanation natural killer cell function.J Ethnopharmacol. 2015;173:157-165. doi:1016/j.jep.2015.07.017
Zhao XZ. Effects ofAstragalus membranaceusand Tripterygium hypoglancumon natural killer cell activity of peripheral blood mononuclear in systemic lupus erythematosus.Zhongguo Zhong Xi Yi Jie He Za Zhi.1992;12(11):669-671,645.
Li K, Chen Y, Jiang R, et al. Protective effects of astragaloside IV against ovalbumin-induced allergic rhinitis are mediated by T-box protein expressed in T cells/GATA-3 and forkhead box protein 3/retinoic acid-related orphan nuclear receptor yt.Mol Med Rep.2017;16(2):1207-1215. doi:3892/mmr.2017.6685
Tian Z, Liu Y, Yang B, et al. Astagalus polysaccharide attenuates murine colitis through inhibiton of the NLRP3 inflammasome.Planta Med. 2017;83(1-02):70-77. doi:1055/s-0042-108589
Esko JD, Bertozzi C, Schnaar Chapter 55: chemical tools for inhibiting glycosylation. In: Varki A, Cummings RD, Esko JD, et al, eds.Essentials of Glycobiology. 3rd ed.Cold Spring Harbor Laboratory Press; 2015-2017. doi:10.1101/glycobiology.3e.055
McCulloch M, Broffman M, Gao J, Colford JM Jr. Chinese herbal medicine and interferon in the treatment of chronic hepatitis B: a meta-analysis of randomized, controlled trials.Am J Public Health. 2002;92(10):1619-1628. doi:2105/ajph.92.10.1619
Peng T, Yang Y, Riesemann H, Kandolf The inhibitory effect ofAstragalus membranaceuson coxsackie B-3 virus RNA replication.Chin Med Sci J. 1995;10(3):146-150.
Wang S, Li J, Huang H, et al. Anti-hepatitis B virus activities of astragaloside IV isolated from Radix Astragali.Biol Pharm Bull. 2009;32(1):132-135. doi:1248/bpb.32.132
Tian H, Lu J, He H, et al. The effect of Astragalus as an adjuvant treatment in type 2 diabetes mellitus: a (preliminary) meta-analysis.J Ethnopharmacol. 2016;191:206-215. doi:1016/j.jep.2016.05.062
BERBERINE
Varghese FS, Thaa B, Amrun SN, et al. The antiviral alkaloid berberine reduces chikungunya virus-induced mitogen-activated protein kinase signaling.J Virol.2016;90(21):9743-9757. doi:1128/JVI.01382-16
Wang J, Wang L, Lou GH, et al. Coptidis rhizoma: a comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology.Pharm Biol. 2019;57(1):193-225. doi:1080/13880209.2019.1577466
Varghese FS, Kaukinen P, Gläsker S, et al. Discovery of berberine, abamectin and ivermectin as antivirals against chikungunya and other alphaviruses.Antiviral Res.2016;126:117-124. doi:1016/j.antiviral.2015.12.012
Shin HB, Choi MS, Yi CM, Lee J, Kim NJ, Inn KS. Inhibition of respiratory syncytial virus replication and virus-induced p38 kinase activity by berberine.Int Immunopharmacol. 2015;27(1):65-68. doi:1016/j.intimp.2015.04.045
Dai Q, Zhang D, Yu H, et al. Berberine restricts coxsackievirus B type 3 replication via inhibition of c-Jun N-terminal kinase (JNK) and p38 MAPK activation in vitro.Med Sci Monit.2017;23:1448-1455. doi:12659/msm.899804
Wang YX, Yang L, Wang HQ, et al. Synthesis and evolution of berberine derivatives as a new class of antiviral agents against enterovirus 71 through the MEK/ERK pathway and autophagy.Molecules. 2018;23(8):E doi:3390/molecules23082084
Nerstedt A, Johansson A, Andersson CX, Cansby E, Smith U, Mahlapuu AMP-activated protein kinase inhibits IL-6-stimulated inflammatory response in human liver cells by suppressing phosphorylation of signal transducer and activator of transcription 3 (STAT3).Diabetologia. 2010;53(11):2406-2416. doi:1007/s00125-010-1856-z
Jeong HW, Hsu KC, Lee JW, et al. Berberine suppresses proinflammatory responses through AMPK activation in macrophages.Am J Physiol Endocrinol Metab. 2009;296(4):E955-E964. doi:1152/ajpendo.90599.2008
Lee CH, Chen JC, Hsiang CY, Wu SL, Wu HC, Ho TY. Berberine suppresses inflammatory agents-induced interleukin-1beta and tumor necrosis factor-alpha productions via the inhibition of IkappaB degradation in human lung cells.Pharmacol2007;56(3):193-201. doi:1016/j.phrs.2007.06.003
Yin J, Xing H, Ye J. Efficacy of berberine in patients with type 2 diabetes mellitus.Metabolism. 2008;57(5):712- doi:1016/j.metabol.2008.01.013
Kang BY, Chung SW, Cho D, Kim TS. Involvement of p38 mitogen-activated protein kinase in the induction of interleukin-12 p40 production in mouse macrophages by berberine, a benzodioxoloquinolizineBiochemPharmacol. 2002;63(10):1901-1910. doi:1016/s0006-2952(02)00982-6
Kim TS, Kang BY, Cho D, Kim SH. Induction of interleukin-12 production in mouse macrophages by berberine, a benzodioxoloquinolizine alkaloid, deviates CD4+ T cells from a Th2 to a Th1 response.Immunology. 2003;109(3):407-414. doi:1046/j.1365-2567.01673.x
Ivanovska N, Philipov Study on the anti-inflammatory action of Berberis vulgaris root extract, alkaloid fractions and pure alkaloids. Int J Immunopharmacol. 1996;18(10):553-561. doi:1016/s0192-0561(96)00047-1
Liu W, Liu P, Tao S, et al. Berberine inhibits aldose reductase and oxidative stress in rat mesangial cells cultured under high glucose.Arch Biochem Biophys. 2008;475(2):128-134. doi:1016/j.abb.2008.04.022
Wu Y, Li JQ, Kim YJ, Wu J, Wang Q, Hao Y. In vivo and in vitro antiviral effects of berberine on influenza virus. Chin J Integr2011;17(6):444-452. doi:1007/s11655-011-0640-3
Enkhtaivan G, Kim DH, Park GS, et al. Berberine-piperazine conjugates as potent influenza neuraminidase blocker.Int J Biol Macromol. 2018;119:1204-1210. doi:1016/j.ijbiomac.2018.08.047
Saha P, Bhattacharjee S, Sarkar A, Manna A, Majumder S, Chatterjee M. Berberine chloride mediates its anti-leishmanial activity via differential regulation of the mitogen activated protein kinase pathway in macrophages.PLoS2011;6(4):e18467. doi:1371/journal.pone.0018467
Lee BH, Chathuranga K, Uddin MB, et al. Coptidis rhizoma extract inhibits replication of respiratory syncytial virus in vitro and in vivo by inducing antiviral state.J Microbiol. 2017;55(6):488-498. doi:1007/s12275-017-7088-x
Zhang Y, Li X, Zou D, et al. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine.J Clin Endocrinol Metab. 2008;93(7):2559-2565. doi:1210/jc.2007-2404
Yin J, Xing H, Ye J. Efficacy of berberine in patients with type 2 diabetes mellitus.Metabolism. 2008;57(5):712-717. doi:1016/j.metabol.2008.01.013
Meng S, Wang LS, Huang ZQ, et al. Berberine ameliorates inflammation in patients with acute coronary syndrome following percutaneous coronary Clin Exp Pharmacol Physiol. 2012;39(5):406-411. doi:1111/j.1440-1681.2012.05670.x
Li G, Zhao M, Qiu F, Sun Y, Zhao L. Pharmacokinetic interactions and tolerability of berberine chloride with simvastatin and fenofibrate: an open-label, randomized, parallel study in healthy Chinese subjects.Drug Des Devel Ther. 2018;13:129-139. doi:2147/DDDT.S185487
Ju J, Li J, Lin Q, Xu H. Efficacy and safety of berberine for dyslipidaemias: a systematic review and meta-analysis of randomized clinical trials.Phytomedicine. 2018;50:25-34. doi:1016/j.phymed.2018.09.212
ECHINACEA (ECHINACEA SPECIES)
Barnes J, Anderson LA, Gibbons S, Phillipson JD. Echinacea species (Echinacea angustifolia(DC.) Hell.,Echinacea pallida(Nutt.) Nutt.,Echinacea purpurea(L.) Moench): a review of their chemistry, pharmacology and clinical properties.J Pharm Pharmacol. 2005;57(8):929-954. doi:1211/0022357056127
Gan XH, Zhang L, Heber D, Bonavida Mechanism of activation of human peripheral blood NK cells at the single cell level by echinacea water soluble extracts: recruitment of lymphocyte-target conjugates and killer cells and activation of programming for lysis.Int Immunopharmacol. 2003;3(6):811-824. oi:1016/S1567-5769(02)00298-9
Sun LZ, Currier NL, Miller SC. The American coneflower: a prophylactic role involving nonspecific immunity.J Altern Complement Med. 1999;5(5):437-446. doi:1089/acm.1999.5.437
Rininger JA, Kickner S, Chigurupati P, McLean A, Franck Z. Immunopharmacological activity of echinacea preparations following simulated digestion on murine macrophages and human peripheral blood mononuclear cells.J Leukoc Biol. 2000;68(4):503-510.
Steinmüller C, Roesler J, Gröttrup E, Franke G, Wagner H, Lohmann-Matthes Polysaccharides isolated from plant cell cultures ofEchinacea purpureaenhance the resistance of immunosuppressed mice against systemic infections withCandida albicansandListeria monocytogenes.Int J Immunopharmacol. 1993;15(5):605-614. doi:1016/0192-0561(93)90078-d
Groom SN, Johns T, Oldfield PR. The potency of immunomodulatory herbs may be primarily dependent upon macrophage activation.J Med Food. 2007;10(1):73-79. doi:1089/jmf.2006.233
Woelkart K, Marth E, Suter A, et al. Bioavailability and pharmacokinetics ofEchinacea purpureapreparations and their interaction with the immune system.Int J Clin Pharmacol Ther. 2006;44(9):401-408. doi:5414/cpp44401
Spelman K, Burns J, Nichols D, Winters N, Ottersberg S, Tenborg Modulation of cytokine expression by traditional medicines: a review of herbal immunomodulators.Altern Med Rev. 2006;11(2):128-150.
Binns SE, Hudson J, Merali S, Arnason Antiviral activity of characterized extracts from Echinacea spp. (Heliantheae: Asteraceae) against herpes simplex virus (HSV-I).Planta Med. 2002;68(9):780-783. doi:1055/s-2002-34397
Thompson KD. Antiviral activity of Viracea against acyclovir susceptible and acyclovir resistant strains of herpes simplex virus.Antiviral Res. 1998;39(1):55-61. doi:1016/s0166-3542(98)00027-8
Shah SA, Sander S, White CM, Rinaldi M, Coleman CI. Evaluation of echinacea for the prevention and treatment of the common cold: a meta-analysis.Lancet Infect Dis. 2007;7(7):473-480. doi:1016/S1473-3099(07)70160-3
Schoop R, Klein P, Suter A, Johnston SL. Echinacea in the prevention of induced rhinovirus colds: a meta-analysis.Clin Ther.2006;28(2):174-183. doi:1016/j.clinthera.2006.02.001
Linde K, Barrett B, Wölkart K, Bauer R, Melchart Echinacea for preventing and treating the common cold.Cochrane Database Syst Rev.2006;(1):CD000530. doi:1002/14651858.CD000530.pub2
Naser B, Lund B, Henneicke-von Zepelin HH, Köhler G, Lehmacher W, Scaglione F. A randomized, double-blind, placebo-controlled, clinical dose-response trial of an extract of baptisia, echinacea and thuja for the treatment of patients with common cold.Phytomedicine. 2005;12(10):715-722. doi:1016/j.phymed.2005.03.002
Narimanian M, Badalyan M, Panosyan V, et al. Randomized trial of a fixed combination (KanJang) of herbal extracts containingAdhatoda vasica,Echinacea purpureaandEleutherococcus senticosusin patients with upper respiratory tract infections.Phytomedicine. 2005;12(8):539-547. doi:1016/j.phymed.2004.10.001
Cohen HA, Varsano I, Kahan E, Sarrell EM, Uziel Effectiveness of an herbal preparation containing echinacea, propolis, and vitamin C in preventing respiratory tract infections in children: a randomized, double-blind, placebo-controlled, multicenter study.Arch Pediatr Adolesc Med. 2004;158(3):217-221. doi:1001/archpedi.158.3.217
Rauš K, Pleschka S, Klein P, Schoop R, Fisher P. Effect of an echinacea-based hot drink versus oseltamivir in influenza treatment: a randomized, double-blind, double-dummy, multicenter, noninferiority clinical trial. Curr Ther Res Clin Exp.2015;77:66-72. doi:1016/j.curtheres.2015.04.001
Weber W, Taylor JA, Stoep AV, Weiss NS, Standish LJ, Calabrese C.Echinacea purpureafor prevention of upper respiratory tract infections in children.J Altern Complement Med. 2005;11(6):1021-1026. doi:1089/acm.2005.11.1021
Jawad M, Schoop R, Suter A, Klein P, Eccles R. Safety and efficacy profile of Echinacea purpurea to prevent common cold episodes: a randomized, double-blind, placebo-controlled trial.Evid Based Complement Alternat Med.2012;2012:841315. doi:1155/2012/841315
Di Pierro F, Rapacioli G, Ferrara T, Togni Use of a standardized extract from Echinacea angustifolia (Polinacea) for the prevention of respiratory tract infections. Altern Med Rev. 2012;17(1):36-41.
Melchart D, Walther E, Linde K, Brandmaier R, Lersch C. Echinacea root extracts for the prevention of upper respiratory tract infections: a double-blind, placebo-controlled randomized trial.Arch Fam Med. 1998;7(6):541-545. doi:1001/archfami.7.6.541
Perri D, Dugoua JJ, Mills E, Koren Safety and efficacy of echinacea (Echinacea angustafolia,purpureaandE. pallida) during pregnancy and lactation.Can J Clin Pharmacol. 2006;13(3):e262-e267.
Mullins RJ, Heddle R. Adverse reactions associated with echinacea: the Australian experience.Ann Allergy Asthma Immunol.2002;88(1):42-51. doi:1016/S1081-1206(10)63591-0
Huntley AL, Thompson Coon J, Ernst E. The safety of herbal medicinal products derived from echinacea species: a systematic review.Drug Saf.2005;28(5):387-400. doi:2165/00002018-200528050-00003
LUTEOLIN
Lin Y, Shi R, Wang X, Shen HM. Luteolin, a flavonoid with potential for cancer prevention and therapy.Curr Cancer Drug Targets. 2008;8(7):634-646. doi:2174/156800908786241050
Khaerunnisa S, Kurniawan H, Awaluddin R, Suhartati S, Soetjipto Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Published online March 13, 2020. doi:10.20944/preprints202003.0226.v1
Ton AT, Gentile F, Hsing M, Ban F, Cherkasov Rapid identification of potential inhibitors of SARS-CoV-2 main protease by deep docking of 1.3 billion compounds.Mol Inform. Published online March 11, 2020. doi:1002/minf.202000028
Yi L, Li Z, Yuan K, et al. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells.J Virol. 2004;78(20):11334-11339. doi:1128/JVI.78.20.11334-11339.2004
Smith M, Smith JC. Repurposing therapeutics for COVID-19: supercomputer-based docking to the SARS-CoV-2 viral spike protein and viral spike protein-human ACE2 interface.ChemRxiv (Preprint). Published online February 26, 2020. doi:26434/11871402.v3
Peng M, Watanabe S, Chan KWK, et al. Luteolin restricts dengue virus replication through inhibition of the proprotein convertase furin. Antiviral Res.2017;143:176-185. doi:1016/j.antiviral.2017.03.026
Fan W, Qian S, Qian P, Li X. Antiviral activity of luteolin against Japanese encephalitis virus.Virus Res. 2016;220:112-116. doi:1016/j.virusres.2016.04.021
Xu L, Su W, Jin J, et al. Identification of luteolin as enterovirus 71 and coxsackievirus A16 inhibitors through reporter viruses and cell viability-based screening.Viruses. 2014;6(7):2778-2795. doi:3390/v6072778
Seelinger G, Merfort I, Schempp CM. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin.Planta Med. 2008;74(14):1667-1677. doi:1055/s-0028-1088314